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Abstract-A general theory is developed for relaxation phenomena in heat and mass transfer, based on an 
internal variables approach. The model equations are systematically derived from the description of the 
dissipation and the extended free energy of the system (Hamiltonian) in terms of the traditional (equi- 
librium) thermodynamic variables and internal variables characterizing heat and mass flux. The resulting 
equations generalize the most important from the previously used empirical models. The meaning of the 
internal variables is clarified through a comparison with the results of the kinetic theory of gases. Mass 

transfer relaxation phenomena in polymers are also discussed. 

1. INTRODUCTION 

THE TRADITIONAL description of heat and mass trans- 
fer, including Fourier’s law for heat conduction and 
Fick’s law for mass diffusion, although adequate for 
steady-state problems, results in an infinitely fast 
propagation of signals, due to the parabolic nature 
of the resulting equations. Although this aphysical 
behavior does not affect most engineering appli- 
cations, even transient ones, there are cases where 
finite wave speeds of propagation are experimentally 
observed, such as in anomalous diffusion in polymers 
[l-4]. In these cases, the above paradoxical behavior 
is corrected by explicitly taking into consideration 
relaxation phenomena in the constitutive equation for 
mass flux. 

So far, with the exception of Maxwellian gases [5], 
the development of constitutive equations describing 
relaxation phenomena associated with heat and mass 
transfer is based upon empirical phenomenological 
relationships governing the corresponding fluxes [l- 
4, 6-91. The purpose of this work is to reveal the 
relation of the relaxation phenomena observed in heat 
conduction and mass diffusion with corresponding 
relaxation processes of the structure of the physical 
systems under consideration through the recently 
developed generalized bracket description [I &I 21. 
This formalism provides a formulation for local equi- 
librium thermodynamics based on internal variables 
which also incorporates a Hamiltonian description 
for flow phenomena. Previous publications have dem- 
onstrated the consistency of this formalism in the 
description of transport phenomena for (multi-com- 
ponent) Newtonian [IO] and viscoelastic [I I] fluids. 

$Author to whom correspondence should be addressed. 

Thus, a thermodynamically consistent theoretical 
framework is developed for the description of trans- 
port processes influenced by relaxation changes of the 
internal microstructure. It is shown that this frame- 
work is rich enough to explain the most important of 
the observed phenomena, consistent with the only (so 
far) case where a microscopic analysis is available 
(Maxwellian gases) and that it is potentially helpful 
in bridging the gap between macroscopic (phenom- 
enological) models and microscopic (based on first 
principles) ones in explaining anomalous mass trans- 
fer behavior in polymeric systems. 

2. FLUX RELAXATION MODELS 

The most general linear form for heat and mass flux 
relaxation phenomena can be obtained through an 
integral equation which represents a weighted average 
of the corresponding affinity over the time history of 
the material 

J, = 
s 

_ T $(I- t’)V,@(x, t’) dt’ (1) 

where 5 is the spatial coordinate. In equation (l), the 
kernel I,/+) is a positive, monotonically-decreasing 
relaxation function that tends to zero as s --t co, and 
Q, is the corresponding potential. For anisotropic 
materials, $ is expected to have a tensorial character, 
so that equation (I) becomes 

J, = 
s 

I).,& - r’)V,,@(x, f’) dr’. (2) 
- ,cr, 

Depending on the form of the kernel $(s), one can 
recover various flux relaxation models. For example, 
by assuming a single, exponentially-decreasing 
expression in time for the relaxation kernel 
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NOMENCLATURE 

1.37 in kinetic theory 
2.68 in kinetic theory 
Helmholtz free energy density 
structural variable in kinetic theory 
solute concentration 
speed relative to the center of mass (in 
kinetic theory) 
phonon speed 
mass distribution function in kinetic 
theory 
generic functional, equation (I 2) 
ad+/aT or q,,/aP 
Hamiltonian functional 
heat or mass flux 
entropy flux 
generic diffusivity 
force constant, in kinetic theory 
characterizes the interaction between 
molecules 
molecular mass in kinetic theory 
thermodynamic pressure 
operating space of thermodynamic 
variables 
heat, heat flux 
symmetric matrix, a*a/a$a4 or a*a/aoao 
entropy density 
entropy functional 
temperature 
time 
energy density 
spatial coordinate. 

Greek symbols 
Internal variables in heat transfer 
rate parameter in Crank’s model 
unit second order tensor 
first difference, i.e. Ap = p, - ,LL? 
internal variable in mass transfer 
generic relaxation time 
chemical potential of species i, -6H/6p, 
absolute velocity coordinate for species i 
mass density 
volumetric rate of heat production 
volumetric rate of internal entropy 
production 
relaxation time for normal processes that 
preserve the phonon momentum 
relaxation time for the momentum- 
nonconserving processes 
internal variable in heat transfer 
generic thermodynamic potential 
spatial domain. 

Subscripts 
i different species 
u spatial coordinates. 

Superscript 
e value at thermodynamic equilibrium. 

Miscellaneous symbols 
[., .] dissipation bracket 
{ ., .} Poisson bracket. 

W) = (k/4 exp (-s/4 (3) ment of heat and concentration waves, propagating 

one can obtain upon differentiation the equivalent 
with finite speed. 

differential model 
Pao and Banerjee [ 161 have remarked that a natural 

generalization of equation (4) to anisotropic media is 

where 1 is the relaxation time and k the corresponding 
diffusivity. An equation of this type was originally 
proposed by Cattaneo [6, 71 for heat transfer. For a 
lucid description of the relaxation-type phenomena 
occurring in heat transfer, from a mathematical point 
of view, see Joseph and Preziosi [8, 91. Ocone and 
Astarita [I31 used Cattaneo’s equation in their model 

J, + A,, 2 = - k,,,V,,@ (5) 

where the tensors 4 and k are positive semi-definite 
and generally depend on CD and the morphology of 
the material. 

When the kernel in equation (1) is defined by the 
superposition of an exponentially decreasing term and 
a delta function 

for heat iransfer in polymers accompanied by crys- 444 = k,b(s)+(k211)exp(-sll) (6) 
tallization. An analogous equation was assumed by 
Kalospiros et al. [l4, IS] in a model describing sorp- 

then an equation arises which is similar to the well- 

tion and transport phenomena in solid polymers. 
known model of Jeffreys (see p. 261 of ref. [17]) for 

Note that equation (4), when considered with the 
the stress and strain rate in viscoelastic liquids 

corresponding conservation equation, results in av m 
hyperbolic equations, thus allowing for the develop- 

J.+i$ = -kV,@-Ak,+ (7) 
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where li, is an effective diffusivity corresponding to 
an instantaneous response to changes in the affinity. 
The relationship between k and k, is given by 

k=k,+k?. (8) 

Note that kz is an elastic diffusivity arising from slow 
relaxation modes. The Pao and Banerjee generaliza- 
tion is also applicable to equations (7) and (8). A 
discussion of the physical ideas leading to equation 
(7) is given by Joseph and Preziosi [8, 91 for the heat 
transfer case. The analogous model for mass transfer 
was proposed by Neogi [I. 21, and used by Camera- 
Roda and Sarti [4] in their model for diffusion in 
polymers. The dependence of the diffusion coefficient 
upon the concentration history considered by Crank 
[3] also results in a similar mass flux model. Inclusion 
of an effective diffusivity is meant to represent fast 
decaying modes in practical applications involving 
much longer timescales where the parabolic nature of 
the resulting equations and consequently the infinitely 
fast wave propagation associated with equation (7) is 
not of concern. 

In addition to the relaxation models discussed 
above for heat conduction, there is another category 
of relaxation models in heat transfer originating from 
an effort to describe a different phenomenon, namely 
the second sound in dielectric crystals [8]. These 
models have never formally been connected with the 
ones of the Cattaneo-type and involve a qualitatively 
different equation for the heat flux which does not 
reduce to Fourier’s law even under steady-state con- 
ditions. The original equation, proposed for the 
description of heat waves in dielectric crystals at low 
temperatures, was obtained by Guyer and Krumhansl 
[I81 through a solution of the linearized Boltzmann 
equation for the pure phonon field in terms of the 
normal-process collision operator. An interpretation 
of their results in terms of fluxes led to the system of 
two equations [8] 

g+w= 0 (9) 

_( 

(10) 

where y is the heat capacity of the material, rR a 
relaxation time for the momentum-nonconserving 
processes (the umklapp processes in which momen- 
tum is lost from the phonon system), cp the average 
sound speed of the phonons and r,., a relaxation time 
for normal processes that preserve the phonon 
momentum [8]. It is interesting to note that the ori- 
ginal equations were expressed in terms of internal 
variables 01~ and g, rather than the heat flux [18]. 
These variables characterize the non-equilibrium 
modification of the distribution function of the 
phonons. In the limit of low temperature, under the 
assumption of a dispersionless and isotropic phonon 

spectrum. these components are proportional to the 
local thermal energy density (i.e. the temperature) 
and the heat current, respectively (see p. 768 of ref. 
[18]). Under these conditions, the heat current is pro- 
portional to the momentum of the phonon gas [ 181. 

Finally note that equation (IO) does not reduce to 
Fourier’s law under steady-state conditions and that 
one can have according to equation (IO) heat flux not 
necessarily down the temperature gradient. This new 
type of heat transport was subsequently found exper- 
imentally in helium IV crystals [l9, 201. Cor- 
responding phenomena for mass transfer, although 
entirely possible from a theoretical point of view, have 
not been reported in the literature. 

3. THE BRACKET FORMULATION OF 
RELAXATION PHENOMENA IN HEAT 

CONDUCTION 

In this section we are concerned with the description 
of relaxation phenomena associated with heat con- 
duction only. Relaxation phenomena associated with 
mass transfer are discussed separately in the next 
section. An internal variable (structural parameter), 
9, is introduced in addition to the usual thermo- 
dynamic variables characterizing the system at equi- 
librium, i.e. the mass and entropy densities, p and s, 
respectively. If so desired. a macroscopic flow field can 
also be introduced following the approach detailed in 
Edwards and Beris [IO-121, but the analysis of its 
effect is not addressed here in order to keep the intro- 
duction of the new ideas in this paper clearer. Also, 
for simplicity, we consider an incompressible medium. 
Thus, without loss ofgenerality, the (constant) density 
can be considered equal to unity and the dependent 
variables of the system are just the entropy density, s, 
and the internal variable, 4. 

As an example of the physical interpretation of the 
internal variable. in the case of an idealized solid, 4 
can be associated with a vector parameter describing 
the anisotropic deviation from equilibrium of the dis- 
tribution density function of phonons [18, 211. This is 
proportional to the momentum flux of the phonon 
gas. The nature of the conformation vector in other 
systems (Maxwellian gases) is discussed in Section 5. 

The operating space for this problem in terms of 
the above variables is 

(11) 

(and appropriate initial and boundary conditions) 
where s is the entropy density and 4 the internal state 
variable, with the corresponding equilibrium value, 
Fq. depending only on s: i.e. eq = Fq(s). The 
additional variable, 4, is called &rnal ii the sense 
that, unlike s (and pin the compressible case), it can 
alter without any corresponding changes occurring 
outside the system (see p. 44 of ref. [22]). It is used to 
characterize a ‘local’ equilibrium state (defined for a 
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particular time and length scale) which corresponds 
to all possible microstates which are compatible with 
the particular value of 4. Within the context of irrc- 
versible thermodynamics, the internal variables arc 
continuum tensor fields of arbitrary order (i.e. scalar. 
vector, second order tensor. etc.) and character 
(absolute or relative)-see Table I in Section 5. In this 
section and the following one, we deal with absolute 
vector internal variables. Furthermore, of importance 
for the specification of the dissipation is that 4 has 
odd parity upon time inversion ; i.e. @I) = - (b_( - I). 
This property arises from the special physical charac- 
ter of 4. For example, in the modeling of second- 
sound phenomena in dielectric crystals. I$ can be 
identified with the momentum flux of the phonon gas 
(see discussion at the end of the previous section) and 
therefore, similar to the velocity, it has to be odd 
under time inversion. 

In the generalized-bracket description. the govern- 
ing equations arc generated from the description of 
the time evolution of an arbitrary functional, F. 
defined as 

F = F[s, $1 = 
s 

f(s, @) d’s (12) 
n 

of the system. This is given by the dynamical equation 
[IO-l21 

dF/dt = {F,H)+[F,H] (13) 

where H is the corresponding Hamiltonian and (., .). 
[., .] are the Poisson and dissipation brackets. respec- 
tively. The Hamiltonian functional represents the 
total energy of the system. In the absence of kinetic 
and potential energies. it may be written solely as a 
volume integral of the internal energy density. U, over 
the entire system R 

Hb, $1 = s 
u(s, 4) d’s, (14) _ n 

The Poisson bracket expresses the (reversible) macro- 
scopic flow (convection) effects [IO-121. Since no 
macroscopic flow is present in this case, {F, H) = 0, 
and we need to be concerned with the definition of 
the dissipation bracket only. The dissipation bracket 
expresses the influence of dissipative (irreversible) 
effects on the system. It is thermodynamically con- 
strained to satisfy two relations. From the first law, 
since H is the total energy of the system 

[H,H]=O (15) 

(so that dH/dt = 0) and the total energy of the system 
(in the absence of external interactions) is conserved. 
From the second law of thermodynamics, the entropy 
of the system (in the absence of external interactions) 
cannot decrease with time. Thus 

[S,ff] 2 0 (16) 

(so that dS/dt > 0), where S is the total entropy of 
the system 

(17) 

Thus, provided that the model parameters are selected 
in such a way so that the inequality (16) is satistied, 
the thermodynamic consistency of the resulting equa- 
tions is guaranteed. Subject to the constraints imposed 
by equations (I 5) and (I 6), and according to coor- 
dinate invariance and the equipresence principle, the 
most general expression for [F, G] close to equilibrium 
(where only linear terms are retained) is given as a 
sum of bilinear functionals in F. G [IO-121. For the 
operating space specified by equation (I I), this gives 

where IY, /\. M, dN (where the J= denotes a fourth 
order tensor) are phenomenological coefficients, 
which are in general functions of the primary 
variables. and G/r& 6/Q are functional derivatives, 
which for spaces with no constraints or gradient 
dependencies (such as P) reduce simply to the partial 
derivatives of the corresponding integrands. 

Note that the dissipation bracket defined by equa- 
tion (I 8) consists of four parts, each one represented 
by a bilinear form in F, G and its corresponding 
entropy production. Also notice that the second pair 
of terms is antisymmetric due to the assumed parity 
of 4 (odd). The first three parts can be considered 
together as coupling the vector affinities present in the 
system, ~H/c%/J and V(GH/&). Thus, the phenom- 
enological coefficient matrices & and @ should be 
symmetric and non-negative definite to satisfy the 
Onsager and thermodynamic relations [l2]. The 
matrix K is inversely proportional to a characteristic - 
relaxation time, whereas the matrices 1 and M are 
related to the elastic and effective conductivity, respec- 
tively. To preserve the finite speed of propagation of 
heat waves, M should always be taken to be identically 
zero. However (see also Joseph and Preziosi [8]), in 
practical applications the fast relaxation modes can 
be approximated using an ‘effective’ (in general, aniso- 
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tropic) conductivity A4, which is meant to represent 
all the modes that have decayed within the time scale 
of the observation (phonon/phonon interactions in 
the case of idealized solids). The elastic conductivity 
on the other hand, takes into account slow modes, 
for example free-electron/phonon interactions. The 
fourth pair of terms in equation (18) represents non- 
homogeneous structural effects and is usually 
neglected as corresponding to higher order cor- 
rections to the dissipation: however, it becomes 
important in systems where the primary dissipation is 
absent (&I = Q). The fourth order tensor ,N should 
also satisfy corresponding symmetry and inequality 
constraints [I?]. 

c’tr 
~ = -V, - 

(:I [( 
A,,T”” +M,,,TV,,T 

(W,, 

6H 6H 
+ N,,;., gKj 0; (jib, 

I 
(25) 

Finally. according to the local equilibrium assumption 
and in the abscncc of mass transfer 

Equating the right-hand side of equation (I 3) with 
the one relating the rate of change of an arbitrary 
functional F[s,$] to the time derivatives of the pri- 
mary variables 

whcrc J,cr arc the rate of heat flux and volumetric 
heat production evaluated by substituting ?.s/?t from 
equation (20b) into equation (26) as 

SH 
A,,,Tr + 

w+, 
(27a) 

dF 
x= 

d3.\. 

6H 6H OH 
u = K,,, . _ 

w e,, 
-A,,,V,T,~ 

(W,, 
(19) 

yields the evolu!ion equations for I$ and s -- 

(20b) 

where we have used the thermodynamic identity 
T = 6H/6s. By comparison with the macroscopic 
relationship 

Ssl& = -V*J”+n’ (21) 

equation (20b) implies the following expression for 
the entropy flux 

(22) 

and the rate for internal entropy production 

+ N,,&( &$‘;( g)]. (23) 

Furthermore, substituting equation (13) in 

To examine more clearly the implications of the 
general model presented above without obscuring the 
physical issues with a complex mathematical formal- 
ism. let us assume a simple Taylor expansion of the 
Helmholtz fret energy density. 11 = (I( T. 4). in terms 
of an equilibrium configuration. 6 = (b’(T) 

9’ z _9”+ F(T- r0) (28) 

cr(T. 4) z ~/‘(T)+;Q(T): (4-9’)($-cp’) (29) - 
where Q = I~‘N/?$&$ is a symmetric matrix. Note that 
Q. 4” and Fare in general anisotropic for anisotropic 
materials, such as certain crystalline solids. in which 
case their dcpcndencc on an anisotropic structural 
paramctcr, in addition to T and 4, has to be taken 
into account. For simplicity, wcwill consider here 
only isotropic media. in which case 4” = F = 0. as in 
the case of a Maxwellian gas (see Table I in Section 
5) 

2 = Q: (30) 

and, without loss of generality, 7‘ = 0. Thus, we have 

u(T.4) = N,(T)+JQ$.$ (31) 

which implies that [IO] 

(32) 

Furthermore, for an isotropic medium 

K=KcS; /\=I@; @=Mcj (33a) 

NTPjr: = N, (S,,S,,, + S,S,,.) + N2(S,,,d;.,) (33b) 

where K. M. N, and N2 are subject to the inequality 
constraints 

and using the symmetry property of I& gives K,M,N,,2N,+3N~ > 0 (34) 



1196 N. S. KALOSPIKOS et (11. 

(A can be either positive or negative) which are 
obtained by application of the thermodynamic 
inequality (16) [12]. Note that equation (33b) is the 
most general isotropic fourth order expression which 
is consistent with the symmetries (r, 7) c) (/I. E). r t* 1 
and ;‘+s [12]. Then. incorporating equations (31)- 
(33) into equations (20)-(23) yields 

+ (N, + N,)V,[V,.(Q 4, )I (35a) 
J, = -[A rQ$,+M T(V,7-)]. (3%) 

Let us now further assume that A TQ and MT are 
independent of the temperature. Then. if in addition 
we set N, = N2 = 0 and the dependence on (!, is elim- 
inated between equations (35a) and (35b). WC get 

internal state vector variable, 11, characterizes the 
diffusion process and can be associated with the flux 
(inertia) of the diffusing species (in terms of the theory 
of interpenetrating continua [23]) or, in the case of 
diffusion in polymers. with the rate of change of the 
microscopic structure of the system. As with any inter- 
nal state variable, its equilibrium value. eq, depends 
only on the other thermodynamic equilibrium vari- 
ables. which are. in this case. s (or T). and pi; i.e. 
W = P( T, p,). Furthermore. of importance is that 0 
(similar to 4) has odd parity upon time inversion; 
i.e. (I(r) = -(I( --I). 

The dissipation bracket can be constructed in an 
analogous fashion to the heat transfer case. equation 
(I 8). For the operating space specified by equation 
(37), this gives (ignoring terms affecting the entropy 
and heat transfer) 

(36a) 

which reduces exactly to the Jeffrcys-type model, 
equation (7). If instead we use M = 0 and 
N, = N2 = N. we get 

-A’; r[V’(Q~,)+2V,V,(Q~,,l (36b) 

which reduces exactly to the Guyer and Krumhansl 
model. equation (9). Therefore, we see that for the first 
time, the two most often used heat transfer relaxation 
models appear as limiting cases of the same general 
evolution equations, equation (20). 

4. THE BRACKET DESCRIPTION OF MASS 
DIFFUSION 

In order to analyze relaxation phenomena in mass 
transfer alone we assume that the (mean) velocity is 
zero and that the temperature is constant. The oper- 
ating system in this case is defined as 

0(x, I) : 0 E R3 
PE 

1-- 

p,(.J. I) : pie R’ : c,p,=p,i= I . . . . . I? (37) 

S(~,/):SER 

where 0 is (similar to 4 in the previous section) an 
internal state variableT221, p, the mass density of 
component i, n the number of components and s, as 
usual. the entropy density. Notice that, here and in 
the following, Latin subscripts denote chemical com- 
ponents, as opposed to Greek ones which are reserved 
for the Cartesian coordinates. Therefore, following 
Einstein’s summation convention, repeated indices 
imply a summation over that index, from I to n if the 
indices denote chemical components (Latin) and from 
I to 3 if they denote spatial coordinates (Greek). The 

(38) 

where 0. X’. y’, ,R, i, j = I. . , n are phenom- 
enological coefficients, which are in general functions 
of the primary variables. The dissipation bracket 
defined by equation (37) is very similar to the one 
defined by equation (18) ; as such. similar arguments 
as the ones mentioned after equation (18) lead to 
similar symmetry conditions for the phenomenologi- 
cal coefficients. Likewise, there are similarities in the 
physical interpretation : the tensor 2 is inversely pro- 
portional to a relaxation time characteristic of the 
evolution of the internal state variable e, whereas the 
tensors X’ and ‘y”. i, j = I, . , n, are related to the 
elastic and effective diffusivity, respectively. Finally, 
there are similarities in the mathematical conse- 
quences : in order to preserve the finite speed of propa- 
gation of mass waves, \y should be taken to be identi- 
cally zero. For diffus& in polymers, the effective 
diffusivity. following Crank’s arguments [3], is meant 
to represent the (almost) instantaneous response to 
changes in the affinity attributed to movements of 
individual molecular groups and small segments of 
chains, while the elastic diffusivity takes into account 
slow modes associated with the relatively slow uncoil- 
ing and displacement of large segments of the polymer 
chains. The fourth couple of terms in equation (38) 
represents non-homogeneous structural effects and 
will be neglected in the following as corresponding to 
higher order corrections to the dissipation ; however, 
they might become important in systems where the 
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primary dissipation is absent (z’ = 0; see also the 
similar discussion in the previous section). 

However. there are also differences which are not 
only restricted by the fact that there are now n vari- 
ables. p,, i= I, . n, but they are rather due 
primarily to the fact that not all of the phenom- 
enological coefficients entering the description of the 
dissipation bracket can be independently defined. 
Rather. they are constrained to satisfy the following 
equations [ 121 

,$, X’ = Q 

;&z,,=o .i= I,..., n 

(394 

(39b) 

due to the fact that the total mass has to be conserved. 
The above constraints simplify, when only two com- 
ponents are present (taking also into account Onsa- 
ger’s reciprocal relations, w” = x2’), to 

g = -x2 = g (404 

x1’ = -yl’* = -‘y” = ,** G -‘u (40b) 

where & g are the only independent (tensorial) 
parameters entering in the description of the dissi- 
pation bracket which reduces to 

(41) 

Now, equating the right-hand side of equation (41) 
with the one relating the rate of change of a general 
functional F(@,pJ to the evolution equations for the 
primary variables 

dF 
dt= (42) 

yields the following evolution equations for @ and pi : 

(434 

Wb) 

-V,P’,,,V,,(b!)l (43~) 

where Ap z AC, -p? and pc, = 6H/hp,. Equations (43b) 
and (43~) imply that the mass fluxes are 

whereas the requirement of a non-negative entropy 
production (not calculated here) necessitates con- 
straints in the character of the tensors 2, ‘y, and ,fJ. 

Again, to examine more clearly the imphcations of 
the general model presented above without obscuring 
the physical issues with a complex mathematical for- 
malism, let us assume a simple free energy expression 
for the Hamiltonian, provided again by a Taylor 
expansion around equilibrium, the latter cor- 
responding to the constant temperature T and the 
local instantaneous densities p,. Since at equilibrium 
the free energy is minimized with respect to e, the 
linear term in the Taylor expansion is zero. Hence, 
similarly to equations (28) and (29). the Taylor expan- 
sion of the free energy density, (I = a( T. pi, 0). in terms 
of an equilibrium configuration, e = c(T), is 

0’ z 0” + @Ap - Ap”) (45) 

a(T, P,, c, z a’(T pi)+ :QU-, P,): (!j-!jY(!T-_0’) 

(46) 

where Q = a’a/dW is a symmetric matrix. For sim- 
plicity.%e consider here only isotropic media, where 
8, = F = 0 and Q = Q6 (analogous to equation (30) 
in heat transfer). The;, using without loss of gen- 
erality Ap” = 0, we have 

a(T, p,, S) = a,(T, P,) + :QQ * 0 

which implies that [IO] 

(47) 

(48) 

Furthermore, for an isotropic medium 

g=m; g=m; ‘y=Y’6 (49a) 

%,t!r. = Q, G&&c + &d,,) + Q,@,,d,J (49b) 

where @, Y, R,, and R, are subject to inequality 
constraints analogous to the ones provided by equa- 
tion (34) for heat transfer. Note that equation (49b) 
is the most general isotropic fourth order expression 
which is consistent with the symmetries (a, y) * (p, E), 
a ++ /I and y C) E [ 121. Then, incorporating equations 
(47) and (48) into equations (43) and (44) yields 

dB,- 
at - -~Qeo.+xV.(A~)+n,V’(QO,) 

+ W, +%)V,V,(Q 0,) (50) 

J, = - W Q 0, + YV,Wl (51) 
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in complete analogy to the corresponding heat trans- 
fer equations, equations (33) and (34). Let us also 
assume for simplicity that XQ and Y are constant. 
Then. if in addition we set fi, = RZ = 0 and the depen- 
dence on (j is eliminated between equations (SO) and 
(51), we get 

V,(A/c)- ;Q;;(V,(A/l)) 

(52) 

which reduces exactly to the Jelfreys-type model, 
equation (7). This is similar to the equation used by 
Camera-Roda and Sarti [4] in their model. When 
Y = 0, equation (52) coincides with the Cattaneo- 
type mass flux equation used by Kalospiros et al. [14, 
151 in their model and also the one derived by Aipdntis 
[23]. who arrived at it by considering solute and poly- 
mer as interpenetrating continua. Of course. if Q -+ m3, 
or equivalently, Q- ’ + O-which also means that 0 = 0 
at all times-Fick’s law, equation (4) with i, = 0, is 
recovered. 

If instead we use Y = 0 and R, = Rz = R we get 

++‘(J,iX)+2V,V,(J,,X), (53) 

which reduces exactly to the Guyer and Krumhansl 
model, equation (9), in heat transfer in dielectrics. As 
far as we know, equation (53) has not found as yet 
any applications in mass transfer problems. 

5. HEAT AND MASS FLUX RELAXATION IN 
THE CLASSICAL KINETIC THEORY OF 

GASES 

Maxwell’s classical kinetic theory of gases [5] repre- 
sents the first (and, perhaps, greatest) attempt to 
develop a microscopic theory accounting for trans- 
port phenomena. It is interesting to note here that 
Maxwell first arrived at a Cattaneo-type equation for 
heat flux, but immediately proceeded to cast out the 
time derivative term by assuming that the rate of 
conduction quickly establishes itself. In a subsequent 
treatment, Natanson [24] showed how the kinetic 
theory can also account for relaxation phenomena in 
mass transfer. However, his treatment for mass flux 
relaxation was not recognized till 85 years later [25, 
261. An independent derivation was provided by 
Sandler and Dahler [27], who studied the case of equi- 
molar counterdiffusion in a mixture of two very simi- 
lar chemical species. 

An interesting comment can be made, based on the 
kinetic theory results, regarding the relation of each 
one of the transport phenomena to a dtj$wwt strut- 
twal uuriuble of the Maxwellian gas. These results are 

summarized in Table I. The fundamental molecular 
mechanism for relaxation is associated in all cases 
with the effect of the collision process on the evolution 
of the corresponding structural variables. However, 
the structural variables associated with the various 
transport phenomena have rates of evolution which 
are characterized, in general, by difJioent relaxation 
times. The latter may possibly be related to each other 
through the underlying collision process. Regarding 
the value of the aforementioned analysis, it allows us 
to physically interpret and directly relate the relevant 
phenomenological coefficients of the macroscopic 
models developed in Sections 3 and 4 to the diffu- 
sivities and relaxation times obtained by the kinetic 
theory arguments. 

Of course, in the case of gases, relaxation phenom- 
ena are very fast and unimportant to (most) engin- 
eering applications. However. within more complex 
systems, such as polymeric solids discussed in the 
next section, relaxation times can be determined of 
the order of several seconds or larger. Unfortunately, 
a microscopic theory, analogous to kinetic theory, 
which will have allowed us to obtain a microscopic 
physical picture of the macroscopic phenomena, is 
still missing. 

6. MASS TRANSFER RELAXATION 
PHENOMENA IN POLYMERIC SYSTEMS 

A plethora of phenomena associated with mass 
transfer of small solutes in polymers has been 
reported in the literature that cannot be explained by 
classical (Fickian) diffusion theory [30]. Tnro-sruge 
sorprion is a phenomenon usually observed in linear 
perturbation experiments, where the weight uptake 
initially reaches an apparent equilibrium value, only 
to subsequently grow at a much smaller rate to a 
significantly larger final equilibrium solute content 
[3l]. In CUE-II transport, in a neighborhood of time 
zero the weight uptake grows linearly with time, often 
up to the time of complete saturation of the sample 
[32]. Another experimental observation is Orvrshoot : 
the amount of solute absorbed reaches a maximum 
and subsequently decreases towards its final equi- 
librium value. In some instances [33-351, the effect 
has been attributed to crystallization occurring at time 
scales comparable to the time scale of the experiment. 
However, in well-documented cases [36-381 over- 
shoots are observed in the absence of crystallization. 

Several models, in addition to the mass flux relax- 
ation models introduced in Section 2, have been pro- 
posed to explain the aforementioned observations. 
All of the previously mentioned phenomena (except, 
possibly, Case-II transport which can be explained 
through a coupling of the mass transfer with the 
stress) invariably necessitate modeling of relaxation 
phenomena extending over macroscopic time scales 
up to several seconds. However, the various models 
differ from each other, with respect to the mechanism 
of the relaxation. One mechanism involves the direct 
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Table I. Characteristic parameters for relaxation in transport phenomena for Maxwellian gases 

Type of 
flux. J 

Character 
of flux 

Corresponding 
structural 

variable, C 

Proportionality Relaxation time 
constant. A. from Maxwell’s 

J=AC theory 

Stress, r Tensor 

Heat flux. (1 Vector l/2 

I 
3 

I ‘n1 111 
j J(k) -- K pA, 

t 

Mass flux, l, Vector 
s 

<,/‘, d<, I 

t Note that the relaxation time for heat flux has a coefficient of l/2 instead of l/3 in the more 
complete Grad [28] and Truesdell [29] formulations. 

coupling of the well documented stress relaxation 
phenomena with diffusion processes [3942]. Others. 
like the Crank model [3] or the proposed Vrentas et 
(11. mechanism [l2, 371. rely only indirectly on the 
stress relaxation process. They involve rather the 
relaxation of the polymer structure in general as far 
as it affects the diffusion coefficient or the chemical 
potential of the solute. In other instances, phe- 
nomenological models relying on the relaxation of 
an inertial quantity (like the flux, or 0 in Section 4) 
have been utilized to explain phenomena such as the 
sorption overshoot [4, 141. Finally, more than one 
mechanism can be involved in more complex models 
[12. 431. 

In addition to the flux relaxation models discussed 
previously, the bracket formalism can actually repro- 
duce most of the models discussed in the last para- 
graph. Space constraints do not allow us to present 
the bracket formulations of these models in detail. 
The interested reader can find them in ref. [12]. We 
will rather focus on the implications that the bracket 
analysis on Section 4 has on the still unanswered ques- 
tions related to the appropriateness of the use of mass- 
flux relaxational models with large relaxation times in 
explaining the diffusion of solutes in polymers. More 
specifically, the internal variables necessarily intro- 
duced through the bracket formalism in order to 
reproduce flux relaxation models presented in Section 
2 (for example. O), are inertial in nature with an odd 
parity upon time reversal. This observation is con- 
sistent with the findings from the kinetic theory of 
gases (see Section 5) where the relaxation times are 
very small. However, it raises the question on how it 
is possible to associate a large relaxation time with 
inertial variables, such as the time associated with 
the experimental observations of mass transport 
phenomena with polymers. 

This question is really related to the overall problem 
of introducing inertial phenomena in polymer fluid 
dynamics. It is only recently that awareness on this 
issue has arisen (see, for example, discussion on the 
Hinch [44] and the two-mode Giesekus [45]). Clearly, 

more work is warranted in order to clarify all the 
issues related with this subject. 

7. CONCLUDING REMARKS 

In conclusion. the most significant contribution of 
the above theoretical development is the unification 
of all relaxation processes associated with transport 
phenomena. Granted, the bracket formalism cannot 
distinguish a priori which one of the many available 
mechanisms for transport is more important and 
dominates a particular application. However, it offers 
the flexibility to accommodate the mechanics under a 
common theoretical framework. By modeling relax- 
ation phenomena associated with heat and mass trans- 
fer using an internal-variables approach, which is 
extensively used in describing viscoelastic stress-relax- 
ation behavior, we begin to see a common framework 
for the description of all these cases. In addition, this 
approach allows for the straightforward description 
of coupling between various transport processes 
through their dependence on the same relaxing inter- 
nal variable. Finally, the validity of the internal vari- 
ables approach has been reinforced by showing its 
consistency with the kinetic theory of gases. 
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